LogoLogo
  • README
  • Contribute
    • Discuss on Github
  • Example
    • Banana-Powered Bitcoin Wallet Control Protocol
  • Apps
    • The deployment-info.json Specification
  • Wallet
    • Transaction Creation
    • Data Encryption and Decryption
    • Digital Signature Creation and Verification
    • Input Redemption
    • HTTP Wallet Communications Substrate
    • XDM Wallet Communications Substrate
    • Window Wallet Communication Substrate
    • Wallet Transaction Output Tracking (Output Baskets)
    • Submitting Received Payments to a Wallet
    • Certificate Creation and Revelation
    • Unified Abstract Wallet-to-Application Messaging Layer
    • Transaction Labels and List Actions
    • Output Basket Removal and Certificate Deletion
    • Group Permissions for App Access
    • Extensible Proof-Type Format for Specific Key Linkage Claims
    • P Protocols: Allowing future wallet protocol permission schemes
    • P Baskets: Allowing Future Wallet Basket and Digital Asset Permission Schemes
    • Unified, Vendor-Neutral, Unchanging, and Open BSV Blockchain Standard Wallet-to-Application Interface
  • Transactions
    • Everett-style Transaction Envelopes
    • Simplified Payment Verification
    • Merkle proof standardised format
    • TSC Proof Format with Heights
    • Raw Transaction Format
    • TXO Transaction Object Format
    • Transaction Extended Format (EF)
    • Merkle Path JSON format
    • Compound Merkle Path Format
    • Background Evaluation Extended Format (BEEF) Transactions
    • Simplified Payment Verification
    • Merkle Path Binary Format
    • BSV Unified Merkle Path (BUMP) Format
    • Graph Aware Sync Protocol
    • Scalable Transaction Processing in the BSV Network
    • Atomic BEEF Transactions
    • BEEF V2 Txid Only Extension
  • Scripts
    • Bitcoin Script Binary, Hex and ASM Formats
    • Bitcoin Script Assembly Language
    • Pay to Public Key Hash
    • Pay to R Puzzle Hash
    • Pay to False Return
    • Pay to True Return
    • Push TX
    • Bare Multi-Signature
    • Pay to Push Drop
  • Tokens
    • There is no BRC-20
    • Definition of UTXOs as Bitcoin Tokens
    • Token Exchange Protocol for UTXO-based Overlay Networks
    • Mandala Token Protocol
  • Overlays
    • Overlay Network Data Synchronization
    • Confederacy Host Interconnect Protocol (CHIP)
    • Overlay Network Lookup Services
    • Confederacy Lookup Availability Protocol (CLAP)
    • Universal Hash Resolution Protocol
    • Overlay Network Transaction History Tracking
    • Private Overlays with P2PKH Transactions
    • Standardized Naming Conventions for BRC-22 Topic Managers and BRC-24 Lookup Services
    • Overlay Services Synchronization Architecture
    • Diverse Facilitators and URL Protocols for SHIP and SLAP Overlay Advertisements
  • Payments
    • Direct Payment Protocol (DPP)
    • Paymail Payment Destinations
    • Simple Authenticated BSV P2PKH Payment Protocol
    • PacketPay HTTP Payment Mechanism
    • Hybrid Payment Mode for DPP
    • HTTPS Transport Mechanism for DPP
    • Paymail BEEF Transaction
    • HTTP Service Monetization Framework
  • Peer-to-Peer
    • Authrite Mutual Authentication
    • PeerServ Message Relay Interface
    • PeerServ Host Interconnect Protocol
    • Identity Certificates
    • Genealogical Identity Protocol
    • Publishing Trust Anchor Details at an Internet Domain
    • Message Signature Creation and Verification
    • Serialization Format for Portable Encrypted Messages
    • Defining a Scalable IPv6 Multicast Protocol for Blockchain Transaction Broadcast and Update Delivery
    • Proven Identity Key Exchange (PIKE)
    • Peer-to-Peer Mutual Authentication and Certificate Exchange Protocol
    • HTTP Transport for BRC-103 Mutual Authentication
  • Key Derivation
    • BIP32 Key Derivation Scheme
    • BSV Key Derivation Scheme (BKDS)
    • Security Levels, Protocol IDs, Key IDs and Counterparties
    • Admin-reserved and Prohibited Key Derivation Protocols
    • Revealing Key Linkages
    • Protecting BRC-69 Key Linkage Information in Transit
    • Mnemonic For Master Private Key
    • Linked Key Derivation Scheme
    • Bidirectionally Authenticated Derivation of Privacy Restricted Type 42 Keys
    • Limitations of BRC-69 Key Linkage Revelation
    • Verifiable Revelation of Shared Secrets Using Schnorr Protocol
  • Outpoints
    • Format for Bitcoin Outpoints
    • Spending Instructions Extension for UTXO Storage Format
  • Opinions
    • Users should never see an address
    • List of user experiences
    • Legitimate Uses for mAPI
    • Security and Scalability Benefits of UTXO-based Overlay Networks
    • Improving on MLD for BSV Multicast Services
    • Web 3.0 Standard (at a high level)
    • Thoughts on the Mandala Network
    • Outputs, Overlays, and Scripts in the Mandala Network
  • State Machines
    • Simplifying State Machine Event Chains in Bitcoin
Powered by GitBook
On this page
  • Abstract
  • Motivation
  • Specification
  • Variable Integers

Was this helpful?

Edit on GitHub
Export as PDF
  1. Transactions

Raw Transaction Format

Abstract

This BRC specifies the format used for raw hex Bitcoin transactions, which are a widely-used way of representing Bitcoin transactions on the network. The specification includes details on the layout and various fields within Bitcoin transactions.

Motivation

Bitcoin transactions are the mechanism for transferring custody of bitcoin tokens from one party to another. It is crucial to have a clear and unambiguous specification for their format. The raw hex format is widely-used and understanding its structure is important for developers and other stakeholders in the Bitcoin ecosystem.

Specification

A Bitcoin transaction consists of a version number, a locktime value, a list of inputs, and a list of outputs. The format for a raw hex Bitcoin transaction is as follows:

  • Version: 4-byte integer (little-endian)

  • Input Count: variable-length integer

  • Inputs: a list of input objects, where each input object has the following fields:

    • Previous Transaction Hash: 32-byte hash (little-endian)

    • Previous Transaction Output Index: 4-byte integer (little-endian)

    • Script Length: variable-length integer

    • Unlocking Script: variable-length script

    • Sequence Number: 4-byte integer (little-endian)

  • Output Count: variable-length integer

  • Outputs: a list of output objects, where each output object has the following fields:

    • Value: 8-byte integer (little-endian)

    • Script Length: variable-length integer

    • Locking Script: variable-length script

  • Locktime: 4-byte integer (little-endian)

Variable Integers

The variable-length integer is a compact representation of an integer value. The first byte of the integer determines the format of the integer:

  • If the first byte is less than 0xfd, then the integer is that byte value.

  • If the first byte is 0xfd, then the integer is the next two bytes in little-endian format.

  • If the first byte is 0xfe, then the integer is the next four bytes in little-endian format.

  • If the first byte is 0xff, then the integer is the next eight bytes in little-endian format.

The transaction hash (referred to as the "TXID") is calculated by taking the double-SHA256 hash of the entire transaction. This hash is used as a unique identifier for the transaction on the Bitcoin network.

PreviousTSC Proof Format with HeightsNextTXO Transaction Object Format

Last updated 1 year ago

Was this helpful?

The script fields in the input and output objects are interpreted as bytecode for a , which is a stack-based language used to define spending conditions for bitcoin.

Bitcoin Script